Abstract

¶The airflow over an idealized orography with two mountain peaks and a valley between is investigated using a non-linear numerical model. The flow is assumed to be two-dimensional and nonrotational. Surface friction is neglected. This setup is a first step in studying the modifications a finely structured “real” topography introduces to the well-studied flow over one isolated obstacle. The sensitivity of the flow behavior to the valley width is examined for the case of specified mountain volume as well as constant non-dimensional mountain height. Flow patterns for linear, weakly nonlinear, wave breaking and upstream blocking cases are examined. Whereas the nondimensional mountain height is still the main measure of the nonlinearity of the flow, the differing steepness of upslope and downslope caused by the separating valley, strengthens nonlinear effects. It also modifies wave breaking and upstream blocking. For wide enough valleys wave breaking regions can form above both peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.