Abstract

This paper investigates the self-stabilization principle underlying an underactuated bipedal gait generated by trajectory tracking control of the hip-joint angle. First, we introduce a planar underactuated compass-like biped robot with semicircular feet, and develop its dynamics and linearized system equation. We then design an output following control for the linearized robot's hip-joint angle. Second, we analytically derive the transition equation of state error for stance phase from the state space representation, and solve the stability and optimal conditions. Finally, the validity of the theoretical results is verified through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.