Abstract

This paper investigates the stability principle underlying an underactuated compass gait generated by strict output following control of the hip-joint angle. First, we introduce a planar underactuated compass-like biped robot with semicircular feet and develop its mathematical model. We then linearize the equation of motion and design an output following control for the relative hip-joint angle of the linearized model. Second, we analytically derive the transition function of the state error for the stance phase based on the state space representation and discuss its physical meaning. We also mathematically show that the collision phase is always stable. Finally, the validity of the theoretical results is verified through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.