Abstract

In this work, we report our recently developed 27 kV, 20 A 4H-SiC n-IGBTs. Blocking voltages exceeding 24 kV were achieved by utilizing thick (210 μm and 230 μm), lightly doped N-drift layers with an appropriate edge termination. Prior to the device fabrication, an ambipolar carrier lifetime of greater than 10 μs was measured on both drift regions by the microwave photoconductivity decay (μPCD) technique. The SiC n-IGBTs exhibit an on-state voltage of 11.8 V at a forward current of 20 A and a gate bias of 20 V at 25 °C. The devices have a chip size of 0.81 cm2and an active conducting area of 0.28 cm2. Double-pulse switching measurements carried out at up to 16 kV and 20 A demonstrate the robust operation of the device under hard-switched conditions; coupled thermal analysis indicates that the devices can operate at a forward current of up to 10 A in a hard-switched environment at a frequency of more than 3 kHz and a bus voltage of 14 kV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call