Abstract

Bioasssay-guided investigation of constituents possibly contributing to the allelopathic potential of sweetpotato led to the isolation of a nonpolar seed germination inhibitor in sweetpotato (Ipomoea batatas L.) roots. Mass spectral data supported by HPLC s pectroscopic analyses and data obtained from hydrolysis products revealed the presence of three monogalactosyl-diglycerides (MGDGs) (galactosyl-di-linoleneoyl glyceride, galactosyl-linoleneoyl-linoleoyl glyceride, and galactosyl-di-linoleoyl glyceride) in storage roots. The compounds inhibited proso millet germination, and at 100 ppm inhibition was about 90%. MGDG with fully saturated fatty acids (galactosyl-distearoyl glyceride) was not inhibitory in the bioassay. An efficient method for quantitation of individual MGDGs was developed, and the contents of each compound in the storage root tissues of 12 genetically diverse cultivars and breeding lines were determined. On a dry weight basis, total MGDG contents ranged between 107 and 452 μg/g in the periderm, 298 and 807 μg/g in the cortex, and 296 and 755 μg/g in the stele. Also, large differences in the ratios of the three compounds between clones and between tissues within a clone were noted. The differences between clones indicate that manipulating total content and ratios of MGDGs through plant breeding is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.