Abstract

Alternating current (AC)-driven quantum-dot light-emitting diodes (QLEDs) are superior to direct current-driven QLEDs because they can be directly integrated into household AC electricity and have high stability. However, achieving high-performance AC-driven QLEDs remains challenging. In this work, a bipolar QLED with coplanar electrodes is realized by horizontally connecting a regular QLED and an inverted QLED in series using an Al bridging layer. The bipolar QLED can be turned on with either a positive or a negative bias voltage, with a high external quantum efficiency (EQE) of 22.9%. By replacing the Al with Ag, the resistances of the electron transport layers are effectively reduced, and thus the bipolar QLED shows an enhanced brightness of 16370cdm-2 at 15V. By connecting multiple bipolar QLEDs in series, the resulting light source can be directly driven by a 220V/50Hz household power supply without the need for back-end electronics. The bipolar QLED can also be realized by vertically stacking a regular QLED and an inverted QLED with a metallic intermediate connection layer. It is demonstrated that the coplanar or vertical bipolar QLEDs could find potential applications in household AC electricity play-and-plug solid-state lighting and single- or double-sided displays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.