Abstract
In this work, we investigate an efficient electron-selective passivating contact with TiOx/LiF/Al contact structure, which offers both low surface recombination and specific contact resistance. Optimized TiOx layer thickness of 4 nm provides high quality surface passivation, achieving minority carrier lifetime of 3.03 ms on 5 Ω cm n-type wafers, with a saturated current density J0 of 23 fA/cm2. In addition, inserting a 1 nm LiF between the 4 nm TiOx and Al reduces the contact resistivity to 18 mΩ cm2. The low contact resistivity of TiOx/LiF/Al contact is attributed to barrier reduction from the low work function of LiF/Al stack. A champion solar cell efficiency of 21.3% has been achieved for an n-type crystalline silicon device with a full-area rear TiOx/LiF/Al contact, demonstrating the excellent potential of this passivating contact for fabricating high-efficiency silicon solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.