Abstract
Separate 200, 020, and 002 X-ray peaks were recorded for 0.0, 0.4, and 0.8 wt pct carbon (18 pct Ni) martensites after tempering between 25 and 500°C. The carbon bearing martensites studied here have been tempered initially enough to eliminate the “high tetragonality” 002 peak usually recorded for as-quenched martensite and the present results apply to tempered martensite only. The peak maximum is taken to determine the lattice parameter and the peak shape is recorded. At all carbon levels and after all tempering treatments, the “crd parameter is larger than or equal to the “a” or “b”. The relative enlargement is very small (0.08 pct) for the lowest carbon level and for any carbon level after severe tempering (500°C for 15 min). For the two higher carbon alloys tempered at temperatures below 400°C (for 15 min) the “c” parameter is significantly larger than the “a” and “b” and for the 0.4 wt pct C alloy the “b” is significantly smaller than the“a” whereas in the 0.8 pct C alloy the “b” is slightly larger than the “a”. Within experimental error the mean volume of the unit cell does not change during the tempering studied here and is nearly unaffected by the initial carbon content. This indicates that little (at most 0.1 wt pct) carbon is dissolved in tempered martensite. In the low carbon alloy the peaks are symmetric and sharpen symmetrically during tempering. In the higher carbon alloys the peaks are nearly symmetric and sharp after severe tempering. After less severe tempering the 002 peak is asymmetrically broadened toward lower9 values (higher lattice parameters) whereas the 200 and 020 peaks are asymmetrically broadened toward higher 0 values corresponding to lower lattice parameters. This collection of results is tentatively interpreted as being due to strains in martensite due to transformation induced substructure and precipitated carbides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have