Abstract

Solar radiation is the energy for all biological, physical, and chemical processes of the earth's surface system, and affects the growth and development of crops at all stages. But the diverse data sources and fusion algorithms lead to large differences in the radiation values in various climate datasets. Accurate estimates of the radiation data is not an easy task, the uncertainty of which and the impact on crop yield simulation remains unknown. In this study, the total solar radiation amounts from four independent global radiation datasets were shown considerable heterogeneity across regions and cropping seasons. Forcing the dynamic crop models with the four radiation inputs produced similarly great uncertainties of simulated yield in most regions, with the greatest uncertainty up to 30% of average yield for wheat in Europe. The global-scale uncertainty of simulated yield is increasing during the past three decades and would reach up to 20% of its averages in the future, equivalent to 300 million tons when converting to the global crop production. The results of this study suggest that the previously projected crop yield changes with climate change have large uncertainties propagated from solar radiation data sources used for projections. These uncertainties may mislead the assessment of future food security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.