Abstract

Breast carcinoma is one of the most common malignancies in women. Previous studies have reported that 500 μM valproic acid can sensitize breast tumor cells to the anti-neoplastic agent hydroxyurea. However, the dose requirements for valproic acid is highly variable due to the wide inter-individuals clinical characteristics. High therapeutic dose of valproic acid required to induce anti-tumor activity in solid tumor was associated with increased adverse effects. There are attempts to locate suitably high-efficient low-toxicity valproic acid derivatives. We demonstrated that lower dose of 2-hexyl-4-pentynoic acid (HPTA; 15 μM) has similar effects as 500 μM VPA in inhibiting breast cancer cell growth and sensitizing the tumor cells to hydroxyurea on MCF7 cells, EUFA423 cells, MCF7 cells with defective RPA2-p gene and primary culture cells derived from tissue-transformed breast tumor cells. We discovered HPTA resulted in more DNA double-strand breaks, the homologous recombination was inhibited through the interference of the hyperphosphorylation of replication protein A2 and recombinase Rad51. Our data postulate that HPTA may be a potential novel sensitizer to hydroxyurea in the treatment of breast carcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call