Abstract

Although reliable models may predict the detection efficiency of semiconductor detectors, measurements are needed to check the parameters supplied by the manufacturers, namely, the thicknesses of dead layer, beryllium window, and crystal active area. The efficiency of three silicon detectors has been precisely investigated in their entire photon energy range of detection. In the zero to a few keV range, we developed a new method based on the detection of the 2E1 decay of the metastable Ar17+ 2s→1s transition. Very good theoretical knowledge of the energetic distribution of the 2E1 decay mode enables precise characterization of the absorbing layers in front of the detectors. In the high-energy range (>10 keV), the detector crystal thickness plays a major role in the detection efficiency and has been determined using a A241m source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.