Abstract

To initiate hepatocyte differentiation in human induced pluripotent stem (iPS) cells, cells are cultured in a medium lacking glucose but supplemented with galactose (hepatocyte selection medium, HSM) or in medium supplemented with oncostatin M and small molecules (hepatocyte differentiation inducer, HDI). In the present study, 2‑Deoxy‑D‑glucose (2DG), an analogue of glucose, was utilized instead of glucose deprivation and the effect of 2DG supplementation on iPS differentiation was examined. First, 201B7 cells, an iPS cell line, were cultured in HSM or HDI media for 2days and then subjected to reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in order to analyze expression levels of established hepatocyte markers, including cytosolic aspartate aminotransferase (AST), mitochondrial AST, alanine aminotransferase (ALT), and glycerol kinase. mRNA expression levels of mitochondrial AST, ALT, and glycogen synthase significantly increased following culture in HSM and HDI compared with ReproFF media. Cytosolic AST mRNA expression levels significantly increased following culture in HDI compared with ReproFF media, but not in HSM. To test the effect of 2DG on iPS differentiation, 201B7 cells were cultured in ReproFF, a feeder‑free medium that retains pluripotency, supplemented with 2DG. Following 7days of culture, the cells were subjected to RT‑qPCR to analyze expression levels of α‑fetoprotein (AFP), a marker of immature hepatocytes. AFP mRNA expression levels significantly increased with the addition of 0.1µM 2DG in the media, and galactose addition acted synergistically with 2DG to further upregulate AFP expression. In conclusion, the present study demonstrated that hepatocyte differentiation was initiated in iPS cells cultured in HSM and HDI media and that 2DG could be used as a supplement instead of glucose deprivation to initiate hepatocyte differentiation in iPS cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.