Abstract
There is increasing evidence that omega-3 polyunsaturated fatty acids (PUFAs) have therapeutic potential in various animal models of neuronal injury. However, very few studies have examined the effect of medium-chain fatty acids (MCFAs) on neuronal injury. So in the present study we synthesized various MCFAs and their derivatives, and found that exposure to trans-2-decenoic acid ethyl ester (DAEE) markedly activated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured cortical neurons. Therefore, we examined the effect of DAEE treatment on a rat model of spinal cord injury. DAEE (150 μg/kg body weight) administered after hemisection of the spinal cord resulted in improved functional recovery, decreased the lesion size, increased the activation of ERK1/2, and enhanced the expression of bcl-2 and brain-derived neurotrophic factor (BDNF) mRNA in the injury site of the spinal cord. Furthermore, it also increased neuronal survival after spinal cord injury. These results indicate that the possibility that DAEE will become a promising tool for reducing the secondary damage observed following primary physical injury to the spinal cord.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have