Abstract

The large scale hydrodynamics of laser accelerated thin disks (foils) are studied numerically using a 2-D, evolutionary Lagrangian fluid code. The laser and target parameters considered are relevant to direct drive laser fusion, in the classical interaction regime. Peculiar 2-D features observed in the experiments are recovered in the simulations; agreement with experimental data is found for a series of experiments concerning foils of different thickness. Scaling laws for the design of hydrodynamically equivalent experiments are tested, with the effects of non-scaled processes turning out to be fairly small, although observable, and qualitatively in agreement with the relevant theory. Simulations also indicate the adequacy of foil acceleration experiments driven by non-uniform (but controlled) beams to the quantitative study of the smoothing of the irradiation non-uniformities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.