Abstract

The analysis of the vibration response of electrical machines has importance in noise prediction and more recently, diagnosis of electrical faults, especially in the industrial environment, where it is a well-known technique. This work assesses the performance of a strongly coupled two-dimensional (2-D) magnetomechanical approach, as directly available in multiphysics software, for the simulation of an induction machine under heavy operational conditions: a direct-on-line startup. Both healthy and broken bar states are simulated in a time span long enough to allow the detailed study of the varying frequency components. The results yield, in addition to the usual electrical and magnetic quantities, electromagnetic-induced vibration components in the stator. A comparison with current and vibration experimental data is also performed showing a good agreement with variable frequency components and certain limitations concerning their amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.