Abstract

A two-dimensional (2-D) thermoluminescence (TL) dosimetry system, consisting of LiF:Mg,Cu,P (MCP-N)-based TL foils and a TLD reader equipped with a CCD camera, was developed at the Institute of Nuclear Physics (IFJ PAN) in Krakow, Poland. We applied this system to verify 2-D dose distributions in the 62 MeV proton ocular radiotherapy beam at INFN, Catania. TL foils placed inside a specially designed PMMA eye phantom were irradiated and read out to determine 40 × 40 mm 2 planar ( X – Y and X – Z ) dose distributions for doses up to 16 Gy. Dose and energy response for LiF:Mg,Cu,P were calculated using the one-hit detector microdosimetric model and applied to correct the detector response. TLD-measured and MCNPX-calculated distal ranges agreed to within 0.3 mm, while TLD-measured transverse beam cross-sections were about 0.8 mm wider than those calculated using the MCNPX Monte Carlo code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.