Abstract

The lack of disease-modifying pharmacological agents for effective treatment of multiple sclerosis (MS) still represents a large and urgent unmet medical need. Our previous studies showed that ligands to type 2 imidazoline receptors (I 2R) were effective in protecting spinal cord injury caused by experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this study, we further examined the protective property of a very selective ligand of I 2R, 2-(2-benzofuranyl) 2-imidazoline (2-BFI) against EAE. Importantly, a mechanism of 2-BFI-mediated protection was investigated which possibly involves an I 2R binding protein, brain-creatine kinase (B-CK), as well as CaATPase and calpain. The enzymatic activity of B-CK and CaATPase was significantly reduced in EAE injured spinal cord. Reduction of B-CK activity in EAE spinal cord may lead to energy reduction and dysfunction in cellular calcium homeostasis. Increased intracellular calcium evokes elevation of calpain activity occurring in EAE spinal cord which causes further tissue damage. Indeed, EAE injured spinal cord showed significant reduction in CaATPase and increase calpain activities. Remarkably, spinal cord tissue from mice treated daily with 2-BFI during the progression of EAE significantly restored B-CK and CaATPase enzymatic activities and showed no induction in calpain activity. Moreover, EAE spinal cord from 2-BFI treated mice also demonstrated better preservation of myelin; reduced axonal injury, as evidenced by the lower level of β-APP expression, and above all, highly improved neurobehavioral scores ( p < 0.01; n = 10). These findings suggest that 2-BFI can be further developed as a therapeutic drug for MS treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.