Abstract

The effects of light, 2-amino-4-phosphonobutyric acid (APB), and kainic acid on rat retinal gamma-aminobutyric acid (GABA)-ergic transmission were studied by measuring levels of retinal GABA following subcutaneous injection of gabaculine, an irreversible inhibitor of GABA-transaminase. Post-gabaculine levels of retinal GABA in light-exposed rats were significantly greater than those in rats held in darkness. The synaptic mechanism of this effect of light was examined by measuring post-gabaculine levels of retinal GABA in rats placed into either lighted or darkened conditions after receiving unilateral intravitreal injections of APB, a glutamate analogue that selectively decreases the activity of ON synaptic pathways in the retina. APB attenuated the post-gabaculine accumulation of GABA in rats held in the light, but not in those placed into darkness. Furthermore, the light-dependent increment in post-gabaculine accumulation of retinal GABA was entirely APB sensitive, and the effect of APB was entirely light dependent. In contrast to APB, kainic acid stimulated the post-gabaculine accumulation of retinal GABA in vivo. Our findings suggest that APB and kainic acid influence GABAergic transmission at different sites in the retina and that some retinal GABAergic neurons are either ON or ON-OFF amacrine cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.