Abstract
Human telomerase RNA (hTR), an important component of telomerase, is a possible target of telomerase-based cancer gene therapy. The present study was undertaken to assess the efficacy of antisense hTR therapy using newly developed 2-5A (5'-phosphorylated 2'-5'-linked oligoadenylate)-linked oligonucleotides against cervical cancer cells. ME180 and SiHa cells were treated with 2-5A-linked antisense hTR designed to complement the region of hTR between residues 76 and 94. The hTR expression, telomerase activity, cell viability, and apoptosis were then examined. The 2-5A anti-hTR effectively degraded hTR and inhibited telomerase activity. The 2-5A mutant anti-hTR and the anti-hTR without 2-5A were not capable of inhibiting telomerase activity. Inhibition of telomerase by 2-5A anti-hTR rapidly decreased cell viability only in telomerase-positive cells within 3-6 days after the treatment, when telomere length has not yet been shortened. This inhibition was associated with apoptosis, possibly through activation of caspase family members. These findings suggest that 2-5A-linked antisense-hTR therapy has a potent telomerase-inhibitory effect associated with a cytocidal effect from caspase-induced apoptosis, and may therefore be a potential tool in telomerase-based gene therapy against cervical cancers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have