Abstract
An urgent need to find an effective solution to bacterial resistance is pushing worldwide research for highly effective means against this threat. Newly prepared hybrid organosilane fibres consisting of a (1S,2S)-cyclohexane-1,2-diamine derivative, interconnected in the fibre network via covalent bonds, were fully characterised via different techniques, including FTIR, TGA-FTIR, SEM-EDS, and solid-state NMR. Fibrous samples were successfully tested against two types of pathogenic bacterial strains, namely Staphylococcus aureus, and Pseudomonas aeruginosa. The obtained results, showing >99.9% inhibition against Staphylococcus aureus and Pseudomonas aeruginosa in direct contact compared to the control, may help particularly in case of infections, where there is an urgent need to treat the infection in direct contact. From this point of view, the above-mentioned fibrous material may find application in wound healing. Moreover, this new material has a positive impact on fibroblasts viability.
Highlights
Pathogenic bacteria have become a worldwide problem
A novel hybrid fibrous material marked as DACHsilane was prepared via electrospinning (Figure 1)
Homogeneous, purely organosilane fibres consisting of a (1S,2S)-cyclohexane-1,2-diamine bis-silane derivative in combination with TEOS were prepared for the first time in a one-pot sol-gel synthesis and electrospinning
Summary
Pathogenic bacteria have become a worldwide problem. Organization (WHO) statistics, over 1.4 million people worldwide suffer from infections caused by pathogenic bacteria acquired in hospitals [1]. Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are among the most problematic pathogenic bacteria closely connected with an extremely overgrowing resistance to antibiotics, which brings another major complication in the treatment [2,3]. The infections caused by P. aeruginosa are usually resistant to multiple antibiotics due to the bacterium’s intrinsic resistance [4]. Due to the antibiotic resistance of these bacteria, great effort has been devoted to developing new antibiotics. One group of such compounds are, for example, trans-cyclohexane-1,2-diamine derivatives (DACHs). Previous studies have proved them to be very promising antibacterial compounds against P
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.