Abstract

Two-dimensional relayed coherence transfer NMR spectroscopy (RELAY) has been used to corroborate side chain spin system identities in crowded regions of the 1H NMR spectrum of the lambda cro repressor protein. The mixing time in the RELAY experiments was optimized for specific preselected spin systems by using recently developed methods [Bax, A., & Drobny, G. (1985) J. Magn. Reson, 61, 306-320], which utilize the transverse relaxation time (T2) of the molecule and relevant J couplings for the defined spin system. We demonstrate that a mixing time of 26 ms gives rise to strong C alpha H-C gamma H3 RELAY cross peaks for all valine, threonine, and isoleucine residues, while RELAY cross peaks for other spin systems are weak or are not observed. This allows for rapid and unambiguous identification of the side chain resonances for valine, isoleucine, threonine, and alanine (by elimination). The use of optimized RELAY for analyzing and identifying spin systems in complex spectra is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.