Abstract
Proton nuclear magnetic resonance (NMR) spin-spin relaxation and imaging have been applied to investigate white Portland cement pastes during hydration in the absence and in the presence of organic solvents. The main organic solvent investigated was methanol, alone or together with the organic waste 2-chloroaniline (2-CA), an aromatic amine representative of an important class of highly toxic compounds. For all the analysed samples, prepared with a solvent-to-cement ratio of 0.4, the decay of the echo magnetization has been fitted by adopting a model that combines an exponential component with a gaussian one. The calculated independent relaxation parameters have been discussed in terms of morphological and dynamical changes that occur during the cement hardening process and pore formation. Three kinds of water molecules: "solid-like" (chemically and physically bound), "liquid-like" (porous trapped) and "free" water, endowed with anisotropic, near isotropic and isotropic motion, respectively, were identified. Spin-echo images collected on the same samples during the hydration kinetics, allowed the changes of water and solvents spatial distribution in the porous network to be monitored, showing percolation phenomena and confirming the multimodal open channels structure of the hardened cement system. Both T(2) relaxation and imaging data indicated that a pronounced delay occurs in the cement hardening when organics are present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.