Abstract

Amino acid benzyl esters are very useful chiral synthons, whose enantiomeric purity needs to be carefully verified because of their susceptibility to easy racemization. Alternative to chiral HPLC, 1H NMR in the presence of a chiral solvating agent (CSA) can allow a more rapid and acceptably accurate determination of the enantiomeric composition, if explicit spectral non-equivalence of one or more protons of the analyte enantiomers is found. Here, we have studied the enantiodiscrimination of 13 amino acid benzyl esters by 1H NMR in the presence of (R)-Mosher acid and in different solvents proving that, for 5 of them (Ala, Pro, Glu, Met, Ser), efficient enantiodifferentiation can be achieved and ≤ 98% enatiomeric excesses accurately determined. Generally, as expectable, the best enantiodifferentiated proton was that on the amino acid stereogenic α-carbon, but also the spectral non-equivalence of methyl protons and of protons on the β-carbon and on the benzylic carbon could be exploited to distinguish the two enantiomers and to quantify the minor one. Structural feature favoring the amino acid ester enantiodiscrimination by the CSA seems to be low sterical hindrance at the amino acid β-carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call