Abstract
Background. Life depends on small subsets of chemically possible reactions. A chemical process can hence be prebiotically plausible, yet be unrelated to the origins of life. An example is the synthesis of nucleotides from hydrogen cyanide, considered prebiotically plausible, but incompatible with metabolic evolution. In contrast, only few metabolism-compatible prebiotic reactions were known until recently. Here, we question whether technical limitations may have contributed to the situation. Methods: Enzymes evolved to accelerate and control biochemical reactions. This situation dictates that compared to modern metabolic pathways, precursors to enzymatic reactions have been slower and less efficient, yielding lower metabolite quantities. This situation demands for the application of highly sensitive analytical techniques for studying ‘proto-metabolism’. We noticed that a set of proto-metabolism studies derive conclusions from the absence of metabolism-like signals, yet do not report detection limits. We here benchmark the respective 1H-NMR implementation for the ability to detect Krebs cycle intermediates, considered examples of plausible metabolic precursors. Results: Compared to metabolomics ‘gold-standard’ methods, 1H-NMR as implemented is i) at least one hundred- to thousand-fold less sensitive, ii) prone to selective metabolite loss, and iii) subject to signal suppression by Fe(II) concentrations as extrapolated from Archean sediment. In sum these restrictions mount to huge sensitivity deficits, so that even highly concentrated Krebs cycle intermediates are rendered undetectable unless the method is altered to boost sensitivity. Conclusions 1H-NMR as implemented in several origin of life studies does not achieve the sensitivity to detect cellular metabolite concentrations, let alone evolutionary precursors at even lower concentration. These studies can hence not serve as proof-of-absence for metabolism-like reactions. Origin of life theories that essentially depend on this assumption, i.e. those that consider proto-metabolism to consist of non-metabolism-like reactions derived from non-metabolic precursors like hydrogen cyanide, may have been derived from a misinterpretation of negative analytical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.