Abstract

One-dimensional (1D) semiconductor nanostructures exhibit exceptional performance in mitigating short-channel effects and ensuring low power consumption. However, the scarcity of high-mobility p-type 1D materials impedes further advancement. Molecular-based materials offer high designability in structure and properties, making them a promising candidate for 1D p-type semiconductor materials. A molecular-based 1D p-type material was developed under the guidance of coordination chemistry. Cu–HT (HT is the abbreviation of p-hydroxy thiophenol) combines the merits of highly orbital overlap between Cu and S, fully covered surface modification with phenol functional groups, and unique cuprophilic (Cu–Cu) interactions. As such, Cu–HT has a remarkable hole mobility of 27.2 cm2 V−1 s−1, which is one of the highest reported values for 1D molecular-based materials to date and even surpass those of commonly used amorphous silicon as well as the majority of 1D inorganic materials. This achievement underscores the significant potential of coordination polymers in optimizing carrier transport and represents a major advancement in the synthesis of high-performance, 1D p-type semiconductor materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call