Abstract
The work introduces a VIPA-based interferometric Rayleigh scattering instrument for tracer-free, simultaneous temperature and velocity measurements along a 1D volume. A virtually imaged phased array (VIPA) replaces the Fabry-Perot etalon conventionally used in interferometric Rayleigh scattering, allowing the extension of the technique from 0D (point or multi-point) to 1D. The Rayleigh-Brillouin spectrum is a function of pressure and temperature and can be used for temperature diagnostics in isobaric flows. A reference leg based on a Fabry-Perot (FP) etalon provides real-time monitoring of the laser wavelength drift during the experiment. The accuracy and precision of the measurements are estimated from measurements in laminar flows, and the technique is then demonstrated in a heated turbulent jet of air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.