Abstract

The proteasome displays three distinct proteolytic activities. Currently, proteasome inhibitors are evaluated using specific fluorescent substrates for each of the individual active sites. However, the photophysical properties of the commonly used fluorophores are similar and thus, the simultaneous monitoring of the three proteolytic activities is not possible. We have developed a bimodal fluorescent fluorinated substrate as a novel tool to study the chymotrypsin-like (ChT-L) proteolytic activity and its regulation by inhibitors and by substrates of trypsin-like (T-L) and caspase-like sites (PA). We demonstrate that this substrate is reliable to evaluate the ChT-L inhibitory activity of new molecules either by fluorescence or (19)F NMR spectroscopy. We have found that the ChT-L activity is dramatically reduced in the presence of T-L and PA substrates. This work provides a proof of concept that the fluorinated substrate enables investigation of the allosteric regulation of the ChT-L activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.