Abstract
BackgroundMicroeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group.Methodology/Principal FindingsWe evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment.Conclusions/SignificanceWe believe that the microeukaryotic targets indicated by our work will be of great applicability in biomonitoring hydrocarbons in mangroves under oil contamination risk or during recovery strategies.
Highlights
Biomonitoring is defined as the systematic use of biological responses to assess changes in the environment, which are often caused by anthropogenic effects [1]
We evaluated the impacts of oil on major microeukaryote groups in mangrove sediment by PCR/denaturing gradient gel electrophoresis (DGGE) (Denaturing Gradient Gel Electrophoresis) and using clone libraries searching for potential candidates for use as bioindicators of oil or in further studies of mangrove bioremediation and biomonitoring using microeukaryotes
The DGGE results indicated similarities above 95% between triplicates and above 90% between microcosm sediment samples without oil contamination from different sampling times, indicating that the microeukaryotic communities were stable in microcosms without oil disturbance during this period of time (66 days) (Data not shown)
Summary
Biomonitoring is defined as the systematic use of biological responses (biomarkers) to assess changes in the environment, which are often caused by anthropogenic effects [1]. Mangrove sediment habitat is biologically rich and provides an unique ecological niche to a variety of organisms [7], which includes several microeukaryotic representatives [7,8,9,10] This group can be an effective gauge in demonstrating the presence of contaminants because they exhibit the key features needed to be a good bioindicator, in particular their abundance, genetic diversity and reduced generation time, which allows for rapid responses to environmental changes [11]. No studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.