Abstract

We rationally designed and synthesized a new PET tracer [18F]-C-SNAT4 to detect cell death both in vitro and in vivo. In vitro radiotracer uptake studies were performed on drug-sensitive and -resistant NSCLC cell lines (NCI-H460 and NCI-H1299, respectively) treated with cisplatin at different doses. In vivo therapy response monitoring by [18F]-C-SNAT4 PET imaging was evaluated with two treatment modalities-chemotherapy and immunotherapy in two tumor xenografts in mice. Radiotracer uptake in the tumors was validated ex vivo using γ-counting and cleaved caspase-3 immunofluorescence. This [18F]-C-SNAT4 PET tracer was facilely synthesized and displayed improved serum stability profiles. [18F]-C-SNAT4 cellular update was elevated in NCI-H460 cells in a time- and dose-dependent manner, which correlated well with cell death. A significant increase in [18F]-C-SNAT4 uptake was measured in NCI-H460 tumor xenografts in mice. In contrast, a rapid clearance of [18F]-C-SNAT4 was observed in drug-resistant NCI-H1299 in vitro and in tumor xenografts. Moreover, in BALB/C mice bearing murine colon cancer CT26 tumor xenografts receiving checkpoint inhibitors, [18F]-C-SNAT4 showed its ability for monitoring immunotherapy-induced apoptosis and reporting treatment-responding mice from non-responding. The uptake of [18F]-C-SNAT4 in tumors received chemotherapy and immunotherapy is positively correlated with the tumor apoptotic level and the treatment efficacy. [18F]-C-SNAT4 PET imaging can monitor tumor response to two different treatment modalities and predict the therapeutic efficacy in preclinical mouse models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call