Abstract

The purpose of the present study was to evaluate the anti-tumor effects of 18beta-glycyrrhetinic acid (GA), a natural compound extracted from liquorice, against pituitary adenoma and its underlying mechanisms in cultured cells and mouse model of xenografted tumor. GA induced cellular damage in rat pituitary adenoma-derived MMQ and GH3 cells, manifested as reduced cell viability, increased lactate dehydrogenase release, elevated intracellular reactive oxygen species (ROS) and Ca(2+) concentration. GA also caused G0/G1 phase arrest, increased apoptosis rate and increased mitochondrial membrane permeabilization by suppressing the mitochondrial membrane potential and down-regulating a ratio of B cell lymphoma 2 (Bcl-2) and Bax. GA activated calcium/calmodulin-dependent protein kinase II (CaMKII), c-Jun N-terminal kinase (JNK) and P38; but these activating effects were attenuated by pretreatment with N-acetyl-L-cysteine, a ROS inhibitor. Pretreatment with KN93, a CaMKII inhibitor, also abolished the GA activation of JNK and P38. GA remarkably inhibited growth of pituitary adenoma grafted on nude mice. These results suggest that the anti-pituitary adenoma effect of GA is associated with its apoptotic actions by activating mitochondria-mediated ROS/mitogen-activated protein kinase pathways in particular CaMKII that may serve a linkage between ROS accumulation and the activation of JNK and P38. This study provides experimental evidence in the support of further developing GA as a chemotherapeutic agent for pituitary adenoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call