Abstract

In this paper we present an adaptive program-voltage generator for 3D-integrated solid state drives (SSDs) based on a boost converter. The converter consists of a spiral inductor, a high-voltage MOS circuit, and an adaptive-frequency and duty-cycle (AFD) controller. The spiral inductor requires an area of only 5 × 5 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> in an interposer. The high-voltage MOS circuit employs a mature NAND flash process. The AFD controller, implemented in a conventional low-voltage MOS process, dynamically optimizes clock frequencies and duty cycles at different values of output voltage, V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OUT</sub> . The power consumption, rising time, and circuit area of the program-voltage generator are 88%, 73%, and 85% less than those of a program-voltage generator with a conventional charge pump, respectively. The total power consumption of each NAND flash memory is reduced by 68%. We also present the design methodology of the high-voltage MOS circuit of the boost converter with a conventional NAND flash process, in which charge-pump-based program-voltage generators are implemented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.