Abstract

AbstractUp to now solar cells fabricated on tricrystalline Czochralski‐grown silicon (tri‐Si) have shown relatively low short‐circuit current densities of about 31–33 mA/cm2 because the three {110}‐oriented grains cannot effectively be textured by commonly used anisotropic etching solutions. In this work, we have optimised a novel chemical texturing step for tri‐Si and integrated it successfully into our solar cell process. Metal/insulator/semiconductor‐contacted phosphorus‐diffused n+p junction silicon solar cells with a silicon‐dioxide‐passivated rear surface and evaporated aluminium contacts were manufactured, featuring a spatially uniform surface texture over all three grains on both cell sides. Despite the simple processing sequence and cell structure, an independently confirmed record efficiency of 17.6% has been achieved. This excellent efficiency is mainly due to an increased short‐circuit current density of 37 mA/cm2 obtained by substantially reduced reflection and enhanced light trapping. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.