Abstract

Organocatalyzed Michael, Mannich, and aldol reactions of aldehydes or ketones, as nucleophiles, have triggered several discussions regarding their reaction mechanism. H2 (18) O has been utilized to determine if the reaction proceeds through an enamine or enol mechanism by monitoring the ratio of (18) O incorporated into the final product. In this communication, we describe the risk of H2 (18) O as an evaluation tool for this mechanistic investigation. We have demonstrated that exchange of (16) O/(18) O occurs in the aldehyde or ketone starting material, caused by the presence of H2 (18) O and amine catalysts, before the Michael, Mannich, and aldol reactions proceed. Because the newly generated (18) O starting aldehydes or ketones and (16) O water affect the incorporation ratio of (18) O in the final product, the use of H2 (18) O would not be appropriate to distinguish the mechanism of these organocatalyzed reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.