Abstract

We report a tunable distributed Bragg reflector-laser diode (DBR-LD) integrated with an electro-absorption-modulator (EAM) at an operating wavelength of 1.3 µm. This LD consists of gain, phase control (PC), DBR, and EAM sections, realized by using a butt-coupling technique in monolithically integrating the multiple quantum wells (MQWs) with the passive core and by applying an etched-mesa buried hetero-structure (EMBH) to the resonance cavity (i.e., gain to DBR section) and a deep-ridge type to the EAM section in fabricating the waveguide structure. Wavelength tuning of the LD is achieved by both applying a voltage to the heater metal of DBR section (coarse tuning) and injecting a current to the ohmic metal of PC section (fine tuning). From the work, the fabricated chips show a threshold current of about 13 mA, a side mode suppression ratio (SMSR) of more than 35 dB, and a tuning range of 15 nm within a heater voltage of 2 V. Dynamic tests for the EAM-integrated LD show the 3 dB bandwidth of more than 20 GHz and clear 25 Gb/s eye openings with a dynamic extinction ratio (DER) of over 7 dB for 16 channels spaced at the wavelength interval of 0.55 nm. Based on these results, we conclude that the EAM-integrated DBR-LD is capable of providing 16 channel operation at a data rate of 25 Gb/s and can be used as an effective light source for WDM-based mobile front-haul networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call