Abstract

A procedure is described for probing changes in 15N T1 relaxation rates and nuclear Overhauser effects (NOE) with viscosity as a function of temperature. The large freezing-point depression and high viscosities of 8.8 M dimethyl sulfoxide (DMSO)−water solutions allowed study of the molecular motions of several ammonium salts, amides, and heterocycles on the pico- to nanosecond time scale. Dipole−dipole interactions provide the dominant form of relaxation for the ammonium salts, but chemical-shift anisotropy (CSA) also plays a significant role in the relaxation of amides and heterocycles. For pyridine, CSA is a particularly important mechanism and the shielding anisotropy of pyridine in 8.8 M DMSO−water is estimated to be on the order of 325 ppm. The 15N NOE of NH4Cl is greater than the theoretical maximum for intramolecular dipolar relaxation at high viscosities, and can be accounted for either by significant intermolecular contributions operating on a different time scale or by rapid motional averaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.