Abstract

Origin of erbium luminescence in silicon-germanium at 1.54 micrometers at 1.54 micrometers has been analyzed. Erbium atoms have been considered as recombination centers with specific values of capture and emission coefficients. Electron-hole recombination through these levels has been considered to be the origin of erbium excitation. At steady state of excitation, a certain fraction of erbium sites were found to remain occupied by electrons. Trapped electrons, which eventually recombine with holes in the valence band, provide the energy for 4I15/2 yields 4I13/2 excitation well layers. Good agreement with experimental results on quenching of erbium luminescence has been achieved. Our model also explains the effect of higher erbium emission in silicon-germanium heterostructures when compared with bulk silicon under similar conditions.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.