Abstract
Domain wall propagation in cylindrical nanowires with modulations of diameter is a key phenomenon to design physics-oriented devices, or a disruptive three-dimensional magnetic memory. This chapter presents a combination of analytical modeling and micromagnetic simulations, with the aim to present a comprehensive panorama of the physics of pinning of domain walls at modulations, when moved under the stimulus of a magnetic field or a spin-polarized current. For the sake of considering simple physics, we consider diameters of a few tens of nanometers at most, and accordingly domain walls of transverse type. Modeling with suitable approximations provides simple scaling laws, while simulations are more accurate, refining the results and defining the range of validity of the models. While pinning increases with the relative change of diameter, a key feature is the much larger efficiency of pinning at an increase of diameter upon considering current rather than field, due to the drastic decrease of current density related to the increase of diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.