Abstract

We measured proton magnetic longitudinal (R(1)) and transverse (R(2)) relaxation rates at 1.4T, iron concentrations, water contents, and amyloid plaque densities in postmortem brain tissue samples from three Alzheimer's disease (AD), two possible AD, and five control subjects. Iron concentrations and R(1) were significantly higher in the temporal cortex region of our AD group compared to the controls. Frequency analyses showed that the observed trends of higher iron, R(1), and R(2) in AD gray matter regions were statistically significant. Simple regression models indicated that for AD and control gray matter the iron concentrations and water contents have significant linear correlations with R(1) and R(2). Multiple regression models based on iron concentrations and water contents were highly significant for all groups and tissue types and suggested that the effects of iron become more important in determining R(1) and R(2) in the AD samples. At 1.4T R(1) and R(2) are strongly affected by water content and to a lesser extent by variations in iron concentrations. The AD plaque density did not correlate with iron concentrations, water contents, R(1), or R(2), suggesting that increases in AD brain iron are not strongly related to the accumulation of amyloid plaques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.