Abstract

1,4-DMN is a relatively new sprout inhibitor for use on maincrop and seed potatoes. Despite its registration as a “dormancy enhancer” for seed, relatively little is known about its effects on plant establishment and productivity. The main objective of this study was to evaluate the effects of 1,4-DMN on the productivity of seed potatoes. ‘Umatilla Russet’ (UR), ‘Ranger Russet’ (RR), and ‘Russet Burbank’ (RB) seed tubers were stored at 4, 7, and 9 C over three seasons to create 80-, 554- and 642-degree-day seed, and 1,4-DMN was applied to maintain dormancy several times during each season. 1,4-DMN residue levels at the end of storage were lower in seed aged at higher temperatures. Multiple applications of 1,4-DMN at higher-than-label rates were necessary to effectively inhibit sprouting of seed of all cultivars stored above 4 C. In field trials, depending on cultivar and year, 1,4-DMN either delayed plant emergence slightly or had no effect. 1,4-DMN increased stem numbers from RB and UR seed, but not from RR seed. 1,4-DMN reduced total tuber yields by 3.2 to 5.6 t ha−1 (5% to 9%), and U.S. No. 1 tuber yields by 4.8 to 7.8 t ha−1 (8% to 15%) in all cultivars, regardless of seed tuber age. 1,4-DMN also reduced the average tuber weight for all three cultivars and shifted the size distribution from larger (> 284 g) to smaller tubers. 1,4-DMN reduced the respective yields of > 397-g, 340-to 397-g, and 284-to 340-g tubers by 43%, 19%, and 18% for RR seed, 31%, 14%, and 11% for RB seed, and 40%, 47%, and 27% for UR seed. Conversely, depending on cultivar, yields of smaller tubers (≤170 g) were 11% to 38% higher from 1,4-DMN-treated seed. The shift in tuber size distribution for RR was accompanied by a 1,4-DMN-induced increase in tuber number per plant and per hectare. However, no such effects on tuber set occurred in RB and UR. Moreover, in most cases, the 1,4-DMN effects on yield and tuber size distribution were independent of seed age. Since the 1,4-DMN-induced shifts in tuber size distribution were greater than the reductions in total and U.S. No. 1 yields, 1,4-DMN may be a suitable treatment to reduce average tuber size and increase yield and uniformity of specific size classes of tubers to more closely match market requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call