Abstract

The isotopic carbon ratio of a calcite-precipitating solution flowing as a water film on the surface of a stalagmite is determined by Rayleigh distillation. It can be calculated, when the HCO3--concentration of the solution at each surface point of the stalagmite and the fractionation factors are known. A stalagmite growth model based entirely on the physics of laminar flow and the well-known precipitation rates of a supersaturated solution of calcite, without any further assumptions, is employed to obtain the spatial distribution of the HCO3--concentration, which contributes more than 95% to the dissolved inorganic carbon (DIC). The δ13C profiles are calculated along the growth surface of a stalagmite for three cases: (A) isotopic equilibrium of both CO2 outgassing and calcite precipitation; (B) outgassing of CO2 is irreversible but calcite precipitation is in isotopic equilibrium. (C) Both CO2 outgassing and calcite precipitation are irreversible. In all cases the isotopic shift δ13C increases from the apex along the distance on a growth surface. In cases A and B, calcite deposited at the apex is in isotopic equilibrium with the solution of the drip water. The difference between δ13C at the apex and the end of the growth layer is independent of the stalagmite’s radius, but depends on temperature. For case A, it is about half the value obtained for cases B and C. In case C, the isotopic composition of calcite at the apex equals that of the drip water, but further out it becomes practically identical with that of case B. The growth model has been applied to field data of stalagmite growth, where the thickness and the δ13C of calcite precipitated to a glass plate located on the top of a stalagmite have been measured as function of the distance from the drip point. The calculated data are in good agreement to the observed ones and indicate that deposition occurred most likely under conditions B, eventually also C. A sensitivity analysis has been performed, which shows that within the limits of observed external parameters, such as drip rates and partial pressure of carbon dioxide PCO2 in the cave, the results remain valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.