Abstract

The solution behavior of the single-stranded CCAAT-containing octamer 1, d(AGCCAATA), that comprises part of the nuclear factor I (NF-I) recognition site at the origin of replication of human adenovirus has been studied by nmr spectroscopy at 500 and 600 MHz. Proton resonance assignments for 1 were aided by selective 13C enrichment at C1' of A1 or A5. High-resolution 13C-1H heteronuclear multiple-bond coherence spectra of the 13C-labeled oligomers permitted the selective detection of furanosyl ring protons within each labeled residue due to short- and long-range 13C-1H couplings to the enriched C1'. The resulting assignments provided firm starting points in the interpretation of double quantum filtered correlated spectra, yielding information supplemented by total correlated spectroscopy (TOCSY) and rotating frame nuclear Overhauser effect spectroscopic data to completely assign the 1H-nmr spectrum of 1 and extract 3JHH values for furanose conformational analysis. Several 13C-1H spin-coupling constants within the 13C-enriched A1 or A5 residues were measured from cross-peak shifts in TOCSY spectra, and their signs determined by inspection of the relative orientations of these shifts. 1H-1H and 13C-1H spin-couplings both indicate a preference (> 75%) for south (C2'-endo) conformations by the furanosyl rings of 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call