Abstract

AbstractOne of the potential application areas for organic and polymers transistors is in radiofrequency identification (RFID) tags. One of the key components of an RFID tag is the front-end rectifier that must rectify a 13.56 MHz AC signal received from a resonant tuned antenna. The rectifier supplies operating power to the tag. Organic transistor circuits have hitherto not operated at this high frequency. We show that by operating pentacene transistors in the non-quasi-static (NQS) regime such operating speeds can be achieved in rectifier circuits. The circuits were fabricated on flexible plastic substrates and employed a solution-cast dielectric. The pentacene mobilities are in the range 0.1-1.5 cm2/V-s. The channel lengths of the transistors are in the range 2-4 μm. Full-wave NQS mode rectifiers were measured to have voltage rectification efficiency in excess of 28% at 14 MHz, demonstrating that such circuits can be used in RFID tags. These circuits operated successfully at speeds up to 20 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.