Abstract

The authors report results from a 130 nm indium phosphide (InP) double heterojunction bipolar transistor (DHBT) technology. A 0.13 × 2 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> transistor exhibits a current gain cutoff frequency <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ft</i> >;520 GHz, with a simultaneous extrapolated power gain cutoff frequency <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fmax</i> 1.1 THz. The HBTs exhibit these RF figures-of-merit while maintaining a common-emitter breakdown voltage <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BVCEO</i> =3.5V ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">JE</i> =10μA/μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ). Additionally, scaling of the emitter junction length to 2 μm enables high device performance at low total power levels. Transistors in the InGaAs/InP material system have demonstrated the highest reported transistor RF figures-of-merit. Previous published results include strained-InGaAs channel high-electron mobility transistors (HEMTs) with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> of >; 1THz , and InP DHBTs with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> >; 800 GHz. High bandwidth DHBTs have applications in a number of RF and mixed-signal applications due to their high power handling and high levels of integration relative to HEMTs. The HBTs reported in this work are designed for transceiver applications at the lower end of the THz frequency band (0.3-3 THz).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call