Abstract
13 C and 15 N NMR spectra of high-energy 2,4,6-triazidopyridine-3,5-dicarbonitrile, 2,3,5,6-tetraazidopyridine-4-carbonitrile and 3,4,5,6-tetraazidopyridine-2-carbonitrile are reported. The assignment of signals in the spectra was performed on the basis of density functional theory calculations. The molecular geometries were optimized using the M06-2X functional with the 6-311+G(d,p) basis set. The magnetic shielding tensors were calculated by the gauge-independent atomic orbital method with the Tao-Perdew-Staroverov-Scuseria hybrid functional known as TPSSh. In all the calculations, a polarizable continuum model was used to simulate solvent effects. This approach provided accurate predictions of the 13 C and 15 N chemical shifts for all the three compounds despite complications arising due to non-coplanar arrangement of the azido groups in the molecules. It was found that the 15 N chemical shifts of the Nα atoms in the azido groups of 2,4,6-triazidopyridines correlate with the 13 C chemical shifts of the carbon atoms attached to these azido groups. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.