Abstract

Density functional theory together with statistical thermodynamics based on the equilibrium constants method and concept of orientational entropy were applied to reproduce the temperature dependences of 1H and 17O nuclear magnetic resonance (NMR) chemical shifts in liquid water. Despite a rather simple theoretical model, a satisfactory agreement between calculated NMR quantities and corresponding experimental data was found. By using only a single adjustable parameter of arbitrary directionality, we succeeded to imitate the first-order temperature effect for both (1H and 17O) NMR signals in the neat water. 1H and 17O magnetic shielding tensors of water molecules in various water clusters have been calculated using the density functional theory. The full geometry optimization was performed using Becke's three-parameter hybrid method and the Lee–Yang–Parr correlation functional (B3LYP) combined with 6-311++G** basis set. Magnetic shielding tensors have been calculated using the modified hybrid functional of Perdew, Burke and Ernzerhof, and the gauge-including atomic orbital approach was applied to ensure gauge invariance of the results. Solvent effects were taken into account by the polarized continuum model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call