Abstract
Cancer metastasis is the primary cause of cancer morbidity and mortality. Anti-metastasis mechanism of skin cancer by 13-butoxyberberine bromide, a novel berberine derivative, has not yet been reported. This study investigated the effects of 13-butoxyberberine bromide on migration and invasion of skin cancer A431 cells. The cytotoxicity of 13-butoxyberberine bromide was determined by MTT assay. The effect of 13-butoxyberberine bromide on cell migration and invasion were examined using a wound-healing assay, transwell migration assay, and transwell invasion assay, respectively. The cell adhesion ability was determined by an adhesion assay. Protein expressions that play important roles in cancer migration and invasion were evaluated by Western blot analysis. The results showed that 13-butoxyberberine bromide effectively inhibited cell migration, invasion, and adhesion in A431 cells. Interestingly, 13-butoxyberberine bromide was more effective for cell migration inhibition than berberine. In addition, 13-butoxyberberine bromide showed anti-migration and anti-invasion effects by down-regulated MMP-2 and MMP-9 expression and up-regulated TIMP-1 and TIMP-2 expression in A431 cells. Moreover, pretreatment with 13-butoxyberberine bromide significantly inhibited EGF-induced cell migration and p-EGFR, ERK, p-ERK, STAT3, and p-STAT3 expressions in A431 cells at lower concentrations when compared with the berberine. These findings indicated that 13-butoxyberberine bromide could be further developed as an anticancer agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.