Abstract
Introduction. The requirements for the performance of measuring devices, including their operating frequency, are constantly becoming stricter. This encourages the creation of wide-band microcircuits for application in microwave blocks of devices, such as vector network analyzers (VNA) and spectrum analyzers (SA). One of such microcircuits, used in the receiver system, is a frequency mixer. The operating range of the mixer determines the operating range of the measuring instrument. Aim. Research and development of an ultra-wideband integrated circuit for a 13…67 GHz frequency mixer based on the GaAs QSBD technology by Micran JSC. Materials and methods. An analysis of existing classic and modified circuit transformers used in mixers was conducted. A modification of the transformer circuit, which allowed a frequency range of 10…70 GHz to be achieved,was proposed. Based on the obtained transformer and GaAs diode technology of Micran JSC, a complete mixer topology was developed and produced. An electrodynamic analysis of the integrated circuit was carried out; measurements were performed using a VNA up to 67 GHz. Results. A wideband mixer with a frequency range of 10…67 GHz is developed. A circuit design is proposed based on a balanced circuit with modified transformers and an intermediate frequency output circuit. The calculated dependences and measurement results of the integrated circuit of the mixer are presented. The mixer exhibits a conversion loss of less than 10 dB in the range of 10…67 GHz. Conclusion. A new broadband transformer with a range of operating frequencies from 10 to 70 GHz was developed. On its basis, a mixer microcircuit was simulated and manufactured. This microcircuit can be used in the receiving and transmitting units of modern measuring instruments. In terms of its characteristics, the proposed microcircuit is an analog of the Marki Mikrowave MM1-1467L mixer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have