Abstract

We demonstrate here 1.2-μm laser emission from a GaAsP-InGaAs strain compensated single-quantum-well (SQW) diode. This development enables the fabrication of vertical-cavity surface-emitting lasers for optical interconnection through Si wafers. Strain compensation and low temperature growth were used to extend the wavelength of emission to the longest yet achieved on a GaAs substrate in this materials system. The minimum threshold density achieved was 273.4 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at a cavity length of 610 μm. We have also demonstrated an 1.144-μm lasing wavelength in a 820-μm-long cavity on a GaAs substrate with a strained InGaAs-GaAs SQW laser for comparison using a low-temperature metal-organic chemical vapor deposition growth technique. The threshold current density for a 590-μm-long cavity under CW operation was 149.7 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call