Abstract

BackgroundFolic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies. The mechanism by which folic acid reduces risk is unknown. Investigations into genetic variation that influences transport and metabolism of folate will help fill this data gap. We focused on 118 SNPs involved in folate transport and metabolism.MethodsUsing data from a California population-based registry, we investigated whether risks of spina bifida or conotruncal heart defects were influenced by 118 single nucleotide polymorphisms (SNPs) associated with the complex folate pathway. This case-control study included 259 infants with spina bifida and a random sample of 359 nonmalformed control infants born during 1983–86 or 1994–95. It also included 214 infants with conotruncal heart defects born during 1983–86. Infant genotyping was performed blinded to case or control status using a designed SNPlex assay. We examined single SNP effects for each of the 118 SNPs, as well as haplotypes, for each of the two outcomes.ResultsFew odds ratios (ORs) revealed sizable departures from 1.0. With respect to spina bifida, we observed ORs with 95% confidence intervals that did not include 1.0 for the following SNPs (heterozygous or homozygous) relative to the reference genotype: BHMT (rs3733890) OR = 1.8 (1.1–3.1), CBS (rs2851391) OR = 2.0 (1.2–3.1); CBS (rs234713) OR = 2.9 (1.3–6.7); MTHFD1 (rs2236224) OR = 1.7 (1.1–2.7); MTHFD1 (hcv11462908) OR = 0.2 (0–0.9); MTHFD2 (rs702465) OR = 0.6 (0.4–0.9); MTHFD2 (rs7571842) OR = 0.6 (0.4–0.9); MTHFR (rs1801133) OR = 2.0 (1.2–3.1); MTRR (rs162036) OR = 3.0 (1.5–5.9); MTRR (rs10380) OR = 3.4 (1.6–7.1); MTRR (rs1801394) OR = 0.7 (0.5–0.9); MTRR (rs9332) OR = 2.7 (1.3–5.3); TYMS (rs2847149) OR = 2.2 (1.4–3.5); TYMS (rs1001761) OR = 2.4 (1.5–3.8); and TYMS (rs502396) OR = 2.1 (1.3–3.3). However, multiple SNPs observed for a given gene showed evidence of linkage disequilibrium indicating that the observed SNPs were not individually contributing to risk. We did not observe any ORs with confidence intervals that did not include 1.0 for any of the studied SNPs with conotruncal heart defects. Haplotype reconstruction showed statistical evidence of nonrandom associations with TYMS, MTHFR, BHMT and MTR for spina bifida.ConclusionOur observations do not implicate a particular folate transport or metabolism gene to be strongly associated with risks for spina bifida or conotruncal defects.

Highlights

  • Folic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies

  • Periconceptional vitamin supplementation with folic acid substantially reduces risks of women having neural tube defect-affected pregnancies [1,2] and has been implicated in reducing risks of several other congenital anomalies, including orofacial clefts and selected heart defects [3,4,5,6,7,8,9,10,11]. Mechanisms underlying these reduced risks have not been elucidated, it has been speculated that supplementation with vitamins containing folic acid restores some normal developmental function that is genetically compromised in selected infants

  • Lack of evidence for other haplotypes that were observed overall was likely the result of smaller sample sizes from stratification. In this California population we found only modest evidence that polymorphisms in 14 folate-related genes contributed to risk of spina bifida

Read more

Summary

Introduction

Folic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies. Periconceptional vitamin supplementation with folic acid substantially reduces risks of women having neural tube defect-affected pregnancies [1,2] and has been implicated in reducing risks of several other congenital anomalies, including orofacial clefts and selected heart defects [3,4,5,6,7,8,9,10,11]. Mechanisms underlying these reduced risks have not been elucidated, it has been speculated that supplementation with vitamins containing folic acid restores some normal developmental function that is genetically compromised in selected infants. Further investigation of other folate-related genes is necessary to reveal clues about mechanisms underlying the potential embryonic protective effects of folic acid supplementation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call