Abstract

Zinc selenide (ZnSe) bicrystal nanobelts with zinc blende structure were obtained via simple thermal evaporation of ZnSe powder and were further investigated by various transmission electron microscopy (TEM) techniques. The bicrystal nanobelts form by introducing {113} twinning. It is interesting to note that the commonly found <111> twinning lamellas, with width ranging from 5 to 30 nm, concurrently grow in each single plate of the bicrystal nanobelts. The crystallographic relations of the ZnSe bicrystal nanobelts are comprehensively characterized by using selected area electron diffraction analysis and high-resolution TEM. The polarity around the twin planes are determined by convergent beam electron diffraction technique, which indicates the absence of polarity reversal along <111> direction. By taking account of the polarity of zinc blende ZnSe, the atomic model and the growth mechanism are also discussed. This novel structure provides a model system for further study of its mechanical, electrical, and optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.